Lecture 16

Infinite Sets & Countability

Some Theorems On Finite Sets

Recall:

Let A and B be two finite sets.

Theorem: There is an injunction from A to B if and only if $|A| \leq |B|$. **Theorem:** There is a surjection from A to B if and only if $|A| \ge |B|$. **Theorem:** There is a bijection from A to B if and only if |A| = |B|.

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the **cardinality** of S. The cardinality of S is denoted by |S|. A set is said to be **infinite** if it is not finite.

Will use them to extend the comparison of cardinality of all sets (finite + infinite).

Comparing Cardinalities

Can be finite or infinite

A to B. We write |A| = |B|, when A and B have the same cardinality.

the same as the cardinality of B. We write $|A| \leq |B|$, in such a case.

cardinality of A is less than the cardinality of B and we write |A| < |B|.

- **Definition:** Two sets A and B have the **same cardinality** if and only if there is a bijection from
- **Definition:** There is an injunction from A to B if and only if the cardinality of A is less than or
- **Definition:** When there is an injunction from A to B but no bijection from A to B, we say the

Two Kinds of Infinite Sets

Sets with the same cardinality as \mathbb{Z}^+

Examples:

- \mathbb{Z} , set of integers.
- \mathbb{Q} , set of rational numbers.
- Set of even numbers.

Infinite Sets

Sets with cardinality different from \mathbb{Z}^+

Examples:

- \mathbb{R} , set of real numbers.
- Set of real numbers between 0 and 1.
- Power set of \mathbb{Z}^+ .

Countable Sets

- Elements of some sets can be listed out as 1st element, 2nd element, 3rd element, etc. • In $\{a, e, i, o, u\}$, we can call a as 1st element, e as 2nd element, i as 3rd element, etc. • In \mathbb{O}^+ , we can call 1 as 1st element, 3 as 2nd element, 5 as 3rd element, etc.

Definition: A set that is either finite or has the same cardinality as \mathbb{Z}^+ is called **countable**. A set that is not countable is called **uncountable**.

Examples: Countable Sets

Example: Show that \mathbb{O}^+ , i.e., set of odd positive integers, is a countable set.

Solution: We need to give a bijection from \mathbb{Z}^+ to \mathbb{O}^+ .

f is onto:

Let k be an odd positive integ

f is one-to-one:

Suppose f is not one-to-one and $\exists n_1, n_2$ such that $n_1 \neq n_2$ and $f(n_1) = f(n_2)$. $f(n_1) = f(n_2) \implies 2n_1 - 1 = 2n_2 - 1 \implies n_1 = n_2$, which is a contradiction.

Hence, *f* is one-to-one.

Let f(n) = 2n - 1 be a function from \mathbb{Z}^+ to \mathbb{O}^+ . We prove now that f is a bijection.

ger. Then, for
$$n = \frac{k+1}{2}$$
, $f(n) = k$.

Examples: Countable Sets

Example: Show that \mathbb{Q}^+ , i.e., set of positive rational numbers, is a countable set.

• • •

• • •

• • •

• • •

Solution: It is enough to list elements of \mathbb{Q}^+ s.t. every $a \in \mathbb{Q}^+$ appears exactly once. (Why?) Let's arrange all the positive rational numbers in an infinite 2-dimensional matrix.

