Lecture 16

Infinite Sets \& Countability

Some Theorems On Finite Sets

Recall:

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$. A set is said to be infinite if it is not finite.

Let A and B be two finite sets.
Theorem: There is an injunction from A to B if and only if $|A| \leq|B|$.) Will use them to extend
Theorem: There is a surjection from A to B if and only if $|A| \geq|B|$.
Theorem: There is a bijection from A to B if and only if $|A|=|B|$.
(finite + infinite).

Comparing Cardinalities

Can be finite or infinite

Definition: Two sets A and B have the same cardinality if and only if there is a bijection from A to B. We write $|A|=|B|$, when A and B have the same cardinality.

Definition: There is an injunction from A to B if and only if the cardinality of A is less than or the same as the cardinality of B. We write $|A| \leq|B|$, in such a case.

Definition: When there is an injunction from A to B but no bijection from A to B, we say the cardinality of A is less than the cardinality of B and we write $|A|<|B|$.

Two Kinds of Infinite Sets

Sets with the same cardinality as \mathbb{Z}^{+}

Examples:

- \mathbb{Z}, set of integers.
- \mathbb{Q}, set of rational numbers.
- Set of even numbers.

Infinite Sets

Sets with cardinality different from \mathbb{Z}^{+}
Examples:

- \mathbb{R}, set of real numbers.
- Set of real numbers between 0 and 1 .
- Power set of \mathbb{Z}^{+}.

Countable Sets

Elements of some sets can be listed out as 1st element, 2nd element, 3rd element, etc.

- In $\{a, e, i, o, u\}$, we can call a as 1 st element, e as 2 nd element, i as 3 rd element, etc.
- In \mathbb{O}^{+}, we can call 1 as 1 st element, 3 as 2 nd element, 5 as 3 rd element, etc.

Definition: A set that is either finite or has the same cardinality as \mathbb{Z}^{+}is called countable. A set that is not countable is called uncountable.

Examples: Countable Sets

Example: Show that \mathbb{D}^{+}, i.e., set of odd positive integers, is a countable set.
Solution: We need to give a bijection from \mathbb{Z}^{+}to \mathbb{O}^{+}.
Let $f(n)=2 n-1$ be a function from \mathbb{Z}^{+}to \mathbb{O}^{+}. We prove now that f is a bijection.
f is onto:
Let k be an odd positive integer. Then, for $n=\frac{k+1}{2}, f(n)=k$.
f is one-to-one:
Suppose f is not one-to-one and $\exists n_{1}, n_{2}$ such that $n_{1} \neq n_{2}$ and $f\left(n_{1}\right)=f\left(n_{2}\right)$.
$f\left(n_{1}\right)=f\left(n_{2}\right) \Longrightarrow 2 n_{1}-1=2 n_{2}-1 \Longrightarrow n_{1}=n_{2}$, which is a contradiction.
Hence, f is one-to-one.

Examples: Countable Sets

Example: Show that \mathbb{Q}^{+}, i.e., set of positive rational numbers, is a countable set.
Solution: It is enough to list elements of \mathbb{Q}^{+}s.t. every $a \in \mathbb{Q}^{+}$appears exactly once. (Why?) Let's arrange all the positive rational numbers in an infinite 2-dimensional matrix.

